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Figure 2.11 A wave incident on the guide-cladding interface of a planar
dielectric waveguide. The wave vectors of the incident, transmitted and
reflected waves are indicated (solid arrowed lines) together with their
components in the z and x directions (dashed arrowed lines).

direction. Therefore from the discussion of Section 2.3.2 the wave propagation in
the z direction may be described by exp j(wf — 82). In addition, there will also be
propagation in the x direction. When the components are resolved in this plane:

B = mk cos o (2.42)
B2 = na2k cos o2 (2.43)

where 8.1 and B, are propagation constants in the x direction for the guide and
cladding respectively. Thus the threce waves in the waveguide indicated in
Figure 2.11, the incident, the transmitted and the reflected, with amplitudes 4, B
and C, respectively, will have the forms:

A= Ao exp ~ (jBux) exp jlel —B2) : (2.44)
B = By exp — (jfx2x) exp jlwt — B2) v (2.45)
C = Coy exp (i x) exp j(wl — B2) {2.46)
Using the simple ;rigonometrical relationship cos’¢ +sin*e=1:
W=tk -g%)= -8 ' (2.47)
and
Bh=(nik* - B = - (2.48)

When an electromagnetic wave is incident upon an interface between two
dielectric media, Maxwell's equations require that both the tangential components
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of E and H and the normal components of D (=¢E) and B (=xH) are continuous
across the boundary. If the boundary is defined at x = 0 we may consider the cases
of the transverse electric (TE) and transverse magnetic (TM) modes.

Initially, let us consider the TE field at the boundary. When Egs. (2.44) and
(2.46) are used to represent the electric field components in the y direction E, and
the boundary conditions are applied, then the normal components of the E and H
fields at the interface may be equated giving

Ao+ Co= By (2.49)

Furthermore it can be shown (see Appendix A) that an electric field component in
the y direction is related to the tangential magnetic field component H, following

i 9E
W pow 90X

(2.50)

Applying the tangential boundary conditions and equating H, by differentiating
E, gives:

= Bx1Ao + B8:2Co = — Br2Bo 2.51)
Algebraic manipulation of Egs. (2.49). and (2.51) provides the following results:
Co= Ao (g—‘"—ﬂ"Z> = Aorer- (2.52)
x1 + Br2, ,
28x1
= —— = A 2.
Bo Ao(ﬁn 2 ﬁ,) orer e

where rgr and rgr are the reflection and transmission coefficients for the E field
at the interface respectively. The expressions obtained in Eqs. (2.52) and (2.53)
correspond to the Fresnel relationships [Ref. 11] for radiation polarized
perpendicular to the interface (E polarization).

When both 8x1 and i are real it is clear that the reflected wave C is in phase
with the incident wave A. This corresponds to partial reflection of the incident
beam. However, as ¢; is increased the component 8, (i.e. 8) increases and,
following Eqs. (2.47) and (2.48), the components B; and B. decrease.
Continuation of this process results in ), passing through zero, a point which is
signified by ¢, reaching the critical angle for total internal reflection. If ¢, is further
increased the component 8,; becomes imaginary and we may write it in the form
— j&2. During this process 8, remains real because we have assumed that 7, > n,.
Under the conditions of total internal reflection Eq. (2.52) may therefore be written
as:

Co= Ao (éﬂiﬁ!> = Ao exp 2jos @.54)
B2 — j&

where we observe there is a phase shift of the reflected wave relative to the incident
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wave. This is signified by 6 which is given by:

¢ _ 43
an 6=~ (2.55)
Bxi

Furthermore, the modulus of the reflected wave is identical to the modulus of the
incident wave (| Co| = | Ao|). The curves of the amplitude reflection coefficient
| rer | and phase shift on reflection, against angle of incidence ¢, for TE waves
incident. on a glass—air interface are displayed in Figure 2.12 [Ref. 14]. These
curves illustrate the abave results, where under conditions of total internal
reflection the reflected wave has an equal amplitude to the incident wave, but
undergoes a phase shift corresponding to é¢ degrees.

A similar analysis may be applied to the TM modes at the interface, which leads
to expressions for reflection and transmission of the form [Ref. 14]:

Bxln% - B:Z”%
Co= Ag| Z——5]=A4 2.56
) O(ﬁ“‘ng T Ban’ oFHR (2.56)

and

2
By = A()( 2Bxn3

et 1= A 2.57
,a.nnm..zn%) orHT @57)

where rur and rur are, respectively, the reflection and transmission coefficients
for the H field at the interface. Again, the expressions given in Eqs. (2.56) and
(2.57) correspond to Fresnel relationships [Ref. 11], but in this case they apply to
radiation polarized parallel to the interface (H polarization). Furthermore,

1.0
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Phase shift
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i
20 40 60 80
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Figure 2.12 Curves showing the reflection coefficient and phase shift on
reflection for transverse electric waves against the angle of incidence for a
glass-air interface (ny=15, n2=1.0). Reproduced with permission from ). E.
Midwinter, Optical Fibers for Transmission, John Wiley & Sons Inc., 1979.
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considerations of an increasing angle of incidence ¢,, such that 3,, goes to zero and
then becomes imaginary, again results in a phase shift when total internal reflection
occurs. However, in this case a different phase shift is obtained corresponding to

Co = Ao exp (2jéu) (2.58)

where

2
tan 5= (ﬂ) tan b¢ @.59)
n;

Thus the phase shift obtained on total internal reflection is dependent upon both
the angle of incidence and the polarization (either TE or TM) of the radiation.

The second phenomenon of interest under conditions of total internal reflection
is the form of the electric field in the cladding of the guide. Before the critical angle
for total internal reflection is reached, and hence when there is only partial
reflection, the field in the cladding is of the form given by Eq. (2.45). However, as
indicated previously, when total internal reflection occurs, 8:2 becomes imaginary
and may be written as — j&. Substituting for 8, in Eq. (2.45) gives the transmitted
wave in the cladding as:

B = By exp (- £2x) exp j(wt - B2) (2.60)

Thus the amplitude of the field in the cladding is observed to decay exponentialiy®
in the x direction. Such a field, exhibiting an exponentially decaying ampiitude, is
often referred to as an evanescent field. Figure2.13 shows a diagrammatic
representation of the evanescent field. A field of this type stores energy and
transports it in the direction of propagation (z) but does not transport energy in the

Evanescent field
-’
‘,o'

Cladding
Guide

n;
m>m

Wave vector
of the incident
plane wave

Standing wave

Figure 2.13 The exponentially decaying evanescent field in the cladding of the
optical waveguide.

* It should be noted that we have chosen the sign of & so that the exponential field decays rather than
grows with distance into the cladding. In this case a growing exponential field is a physically improbable
selution.
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transverse direction {(x). Nevertheless, the existence of an evanescent field beyond
the plane of reflection in the lower index medium indicates that optical energy is
transmitted into the cladding.

The penetration of energy into the cladding underlines the importance of the
choice of cladding material. It gives rise to the following requirements:

1. The cladding should be transparent to light at the wavelengths over which the
guide is to operate.

2. Ideally, the cladding should consist of a solid material in order to avoid both
damage to the guide and the accumulation of foreign matter on the guide walls.
These effects degrade the reflection process by interaction with the evanescent
field. This in part explains the poor performance (high losses) of early optical
waveguides with air cladding.

3. The cladding thickness must be sufficient to allow the evanescent field to decay
to a low value or losses from the penetrating energy may be encountered. In
many cases, however, the magnitude of the field falls off rapidly with distance
from the guide—cladding interface. This may occur within distances equivalent
to a few wavelengths of the transmitted light.

Therefore, the most widely used optical fibers consist of a core and cladding, both
made of glass. The cladding refractive index is thus higher than would be the case
with liquid or gaseous cladding giving a lower numerical aperture for the fiber, but
it provides a far more practical solution.

2.3.5 Goos-Haenchen shift

The phase change incurred with the total internal reflection of a light beam on a
planar dielectric interface may be understood from physical observation. Careful
examination shows that the reflected beam is shifted laterally from the trajectory
predicted by simple ray theory analysis, as illustrated in Figure 2.14. This lateral
displacement is known as the Goos—Haenchen shift, after its first observers.

Virtual reflecting plane

Reflecting__ T 7] i /_7\_\ 1" -—"—-—-"--—7 '___Penetration
interface depth

-2} d1

—— d e

Lateral shift

Figure 2.14 The lateral displacement of a light beam on reflection at a dielectric
interface (Goos—Haenchen shift).
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The geometric reflection appears to take place at a virtual reflecting plane which
is parallel to the dielectric interface in the lower index medium, as indicated in
Figure 2.14. Utilizing wave theory it is possible to determine this lateral shift [Ref.
14] although it is very small (d =0.06 to 0.10 um for a silvered glass interface at
a wavelength of 0.55 um) and difficult to observe. However, this concept provides
an important insight into the guidance mechanism of dielectric optical waveguides.

2.4 Cylindrical fiber

2.4.1 Modes

The exact solution of Maxwell’s equations for a cylindrical homogeneous core
dielectric waveguide® involves much algebra and yields a complex result [Ref. 15].
Although the presentation of this mathematics is beyond the scope of this text, it
is useful to consider the resulting modal fields. In common with the planar guide
(Section 2.3.2), TE (where E.=0) and TM (where H:=0) modes are obtained
within the dielectric cylinder. The cylindrical waveguide, however, is bounded in
two dimensions rather than one. Thus two integers, / and m, are necessary in order
to specify the modes, in contrast to the single integer (m) - required for the planar
guide. For the cylindrical waveguide we therefore refer to TE;, and TM;, modes.
These modes correspond to meridional rays (see Section 2.2.1) travelling within the
fiber. However, hybrid modes where E. and H. are nonzero also occur within the
cylindrical waveguide. These modes which result from skew ray propagation (see
‘Section 2.2.4) within the fiber are designated HE;, and EH,, depending upon
whether the components of H or E make the larger contribution to the transverse
(to the fiber axis) field. Thus an exact description of the modal fields in a step index
fiber proves somewhat complicated. :
Fortunately, the analysis may be simplified when considering optical fibers for
communication purposes. These fibers satisfy the weakly guiding approximation
[Ref. 16] where the relative index difference A < 1. This corresponds to small -
grazing angles 6 in Eq. (2.34). In fact A is usually less than 0.03 (3%) for optical
communications fibers. For weakly guiding structures with dominant forward
propagation, mode theory gives dominant transverse field components. Hence
approximate solutions for the full set of HE, EH, TE and TM modes may be given
by two linearly polarized components [Ref. 16]. These linearly polarized (LP)
modes are not exact modes of the fiber except for the fundamental (lowest order)
mode. However, as A in weakly guiding fibers is very small, then HE-EH mode
pairs occur which have almost identical propagation constants. Such modes are said
to be degenerate. The superpositions of these degenerating modes characterized by
a common propagation constant correspond to particular LP modes regardless of

* This type of optical waveguide with a constant refractive index core is known as a step index fiber
(see Section 2.4.3).
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their HE, EH, TE or TM field configurations. This linear combination of
degenerate modes obtained from the exact solution produces a useful simplification
in the analysis of weakly guiding fibers.

The relationship between the traditional HE, EH, TE and TM mode designations
and the LP;», mode designations are shown in Table 2.1. The mode subscripts / and
m are related to the electric field intensity profile for a particular LP mode (see
Figure 2.15(d)). There are in general 2/ field maxima around the circumference of
the fiber core and m field maxima along a radius vector. Furthermore, it may be
observed from Table 2.1 that the notation for labelling the HE and EH modes has
changed from that specified for the exact solution in the cylindrical waveguide
mentioned previously. The subscript / in the LP notation now corresponds to HE
and EH modes with labels /+ 1 and /— 1 respectively.

The electric field intensity profiles for the lowest three LP modes, together with
the electric field distribution of their constituent exact modes, are shown in
Figure 2.15. It may be observed from the field configurations of the exact modes
that the field strength in the transverse direction (E; or Ey) is identical for the modes
which belong to the same LP mode. Hence the origin of the term ‘linearly
polarized’.

Using Eq. (2.31) for the cylindrical homogeneous core waveguide under the weak
guidance conditions outlined above, the scalar wave equation can be written in the
form [Ref. 17]:

2 2

where y is the field (E or H), n, is the refractive index of the fiber core, k is the
propagation constant for light in a vacuum, and r and ¢ are cylindrical coordinates.
The propagation constants of the guided modes @ lie in the range:

mk < f < mk (2.62)

Table 2.1 Correspondence between the
lower order in linearly polarized modes
and the traditional exact modes from
which they are formed

Linearly polarized Exact

LPos HE1

LP24 HE3q, EH1q

LPp2 HE®

LP3 HE4, EH2y

LPy2 HE22, TEg2, TMo2
LPim HE2m, TEom, TMom

LPim(/I#0o0r1) HE . 1,m EH) - 1m
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Figure 2,15 The electric field configurations for the three lowest LP modes
illustrated in terms of their constituent exact modes: (a) LP mode designations;
(b) exact mode designations; (c) electric field distribution of the exact modes;
(d) intensity distribution of £, for the exact modes indicating the electric field
intensity profile for the corresponding LP modes.

where n; is the refractive index of the fiber cladding. Solutions of the wave equation
for the cylindrical fiber are separable, having the form:

v= E(r){g—)ﬁs—% exp (wf — 6z)] (2.63)
where in this case ¥ represents the dominant transverse electric field component.
The periodic dependence on ¢ following cos /¢ or sin /¢ gives a mode of radial
order /. Hence the fiber supports a finite number of guided modes of the form of
Eq. (2.63). -
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Introducing the solutions given by Eq. (2.63) into Eq. (2.61) results in a

differential equation of the form:

d’E 1dE 2 o 1P

—=+-—+ k- - =|E= .

dr? r dr I:(m 8% r? 0 (2.64)
For a step index fiber with a constant refractive index core, Eq. (2.64) is a Bessel
differential equation and the solutions are cylinder functions. In the core region the
solutions are Bess¢l functions denoted by Ji. A graph of these gradually damped
oscillatory functions (with respect to r) is shown in Figure 2.16(a). It may be noted
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Figure 2.16 (a) Variation of the Bessel function Ji(r) for /=0,1,2,3 (first four
orders), plotted against r. (b) Graph of the modified Bessel function Ki(r)
against r for 1=0,1.
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that the field is finite at »=0 and may be represented by the zero order Bessel
function Jo. However, the field vanishes as r goes to infinity and the solutions in
the cladding are therefore modified Bessel functions denoted by K;. These modified
functions decay exponentially with respect to r, as illustrated in Figure 2.16(b). The
electric field may therefore be given by:

E(r)= GJ/(UR) for R < 1 (core)

Ki((WR)
K(W)

(2.65)

= GJ(U) for R > 1 (cladding)

where G is the amplitude coefficient and R = r/a is the normalized radial coordinate
when g is the radius of the fiber core; U and W which are the eigenvalues in the
core and cladding respectively,* are defined as [Ref. 17]:

U= a(nik®-p?%): (2.66)
W= a(B? - nik?) (2.67)

The sum of the squares of U and W defines a very useful quantity [Ref. 18]}
which is usually referred to as the normalized frequencyt V where

V=(U?+ W?)i = ka(ni - n3) (2.68)

It may be observed that the commonly used symbol for this parameter is the same
as that normally adopted for voltage. However, within this chapter there should be
no confusion over this point. Furthermore, using Eqs. (2.8) and (2.10) the
normalized frequency may be expressed in terms of the numerical aperture NA and
the relative refractive index difference A, respectively, as:

V= 27\-" a(NA) (2.69)

V= ZT" an; 2A)! 2.70)

The normalized frequency is a dimensionless parameter and hence is also sometimes
simply called the ¥V number or value of the fiber. It combines in a very useful
manner the information about three important design variables for the fiber:
namely, the core radius a, the relative refractive index difference A and the
operating wavelength .

* U is also referred to as the radial phase parameter or the radial propagation constant, whereas W is
known as the cladding decay parameter [Ref. 19].

+ When used in the context of the planar waveguide, V is sometimes known as the normalized film
thickness as it relates to the thickness of the guide layer (see Section 10.5.1).
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It is also possible to define the normalized propagation constant b for a fiber in
terms of the parameters of Eg. (2.68) so that:

pt Y _(BIK) - ni

n?— ni

2 2
._.,QL,Q_—Q (2.71)

2n3A

Referring to the expression for the guided modes given in Eq. (2.62), the limits of
B are myk and nk, hence b must lie between 0 and 1.

In the weak guidance approximation the field matching conditions at the
boundary require continuity of the transverse and tangential electrical field
components at the core—cladding interface (at r = a). Therefore, using the Bessel
function relations outlined previously, an eigenvalue equation for the LP modes
may be written in the following form {Ref. 18]:

Jis (U) _ K+ (W)
Ji(U) Ki(W)

Solving Eq. (2.72) with Egs. (2.66) and (2.67) allows the eigenvalue U and hence
B to be calculated as a function of the normalized frequency. In this way the
propagation characteristics of the various modes, and their dependence on the
optical wavelength and the fiber parameters may be determined.

Considering the limit of mode propagation when 8 = nk, then the mode phase
velocity is equal to the velocity of light in the cladding and the mode is no longer
properly guided. In this case the mode is said to be cut off and the eigenvalue W =0
(Eq. 2.67). Unguided or radiation modes have frequencies below cutoff . where
8 < kn,, and hence W is imaginary. Nevertheless, wave propagation does not cease
abruptly below cutoff. Modes exist where 8 < kn; but the difference is very small,
such that some of the energy loss due to radiation is prevented by an angular
momentum barrier [Ref. 21] formed near the core—cladding interface. Solutions of
the wave equation giving these states are called leaky modes, and often behave as
very lossy guided modes rather than radiation modes. Alternatively, as 8 is
increased above nzk, less power is propagated in the cladding until at 8 = nik all
the power is confined to the fiber core. As indicated previously, this range of values
for 8 signifies the guided modes of the fiber.

The lower order modes obtained in a cylindrical homogeneous core waveguide
are shown in Figure 2.17 [Ref. 16]. Both the LP notation and the corresponding
traditional HE, EH, TE and TM mode notations are indicated. In addition, the
Bessel functions Jo and J; are plotted against the normalized frequency and where
they cross the zero gives the cutoff point for the various modes. Hence, the cutoff
point for a particular mode corresponds to a distinctive value of the normalized
frequency (where V = V¢) for the fiber. It may be observed from Figure 2.17 that
the value of V. is different for different modes. For example, the first zero crossing
Jy occurs when the normalized frequency is 0 and this corresponds to the cutoff for

-+

U

(2.72)
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Figure 2.17 The allowed regions for the LP modes of order /=0,1 against
normalized frequency (V) for a circular optical waveguide with a constant
refractive index core (step index fiber). Reproduced with permission from D.

Gloge. Appl. Opt., 10, p. 2552, 1971.
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Figure 2.18 The normalized propagation constant b as a function of
normalized frequency V for a number of LP modes. Reproduced with
permission from D. Gloge. Appl. Opt., 10, p. 2552, 1971.
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LP4 LPs2

Figure 2.19 Sketches of fiber cross sections illustrating the distinctive light
intensity distributions (mode patterns) generated by propagation of individual
linearly polarized modes.

the LPo; mode. However, the first zero crossing for Jo is when the normalized
frequency is 2.405, giving a cutoff value V. of 2.405 for the LP,; mode. Similarly,
the second zero of J; corresponds to a normalized frequency of 3.83, giving a cutoff
value V. for the LPo; mode of 3.83. It is therefore apparent that fibers may be
produced with particular values of normalized frequency which allow only certain
modes to propagate. This is further illustrated in Figure 2.18 [Ref. 16] which shows
the normalized propagation constant b for a number of LP modes as a function of
V. It may be observed that the cutoff value of normalized frequency V. which
occurs when B8 = mak corresponds to b =0.

The propagation of particular modes within a fiber may also be confirmed
through visual analysis. The electric field distribution of different modes gives
similar distributions of light intensity within the fiber core. These waveguide
patterns (often called mode patterns) may give an indication of the predominant
modes propagating in the fiber. The field intensity distributions for the three lower
order LP modes were shown in Figure 2.15. In Figure 2.19 we illustrate the mode
patterns for two higher order LP modes. However, unless the fiber is designed for
the propagation of a particular mode it is likely that the superposition of many
modes will result in no distinctive pattern.

2.4.2 Mode coupling

We have thus far considered the propagation aspects of perfect dielectric
waveguides. However, waveguide perturbations such as deviations of the fiber axis
from straightness, variations in the core diameter, irregularities at the core—
cladding interface and refractive index variations may change the propagation
characteristics of the fiber. These will have the effect of coupling energy travelling
in one mode to another depending on the specific perturbation.
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Ray theory aids the understanding of this phenomenon, as shown in Figure 2.20,
which illustrates two types of perturbation. It may be observed that in both cases
the ray no longer maintains the same angle with the axis. In electromagnetic wave
theory this corresponds to a change in the propagating mode for the light. Thus
individual modes do not normally propagate throughout the length of the fiber
without large energy transfers to adjacent modes, even when the fiber is
exceptionally good quality and is not strained or bent by its surroundings. This
mode conversion is known as mode coupling or mixing. It is usually analysed using
coupled mode equations which can be obtained directly from Maxwell’s equations.
However, the theory is beyond the scope of this text and the reader is directed to
Ref. 17 for a comprehensive treatment. Mode coupling affects the transmission
properties of fibers in several important ways, a major one being in relation to the
dispersive properties of fibers over long distances. This is pursued further in
Sections 3.8-3.11.

Irregularity

(a)

Figure 2.20 Ray theory illustrations showing two of the possible fiber
perturbations which give mode coupling: (a) irregularity at the core-cladding
interface; (b) fiber bend.
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2.4.3 Step index fibers

The optical fiber considered in the preceding sections with a core of constant
refractive index n, and a cladding of a slightly lower refractive index n; is known
as step index fiber. This is because the refractive index profile for this type of fiber
makes a step change at the core—cladding interface, as indicated in Figure 2.21,
which illustrates the two major types of step index fiber. The refractive index profile
may be defined as:

n, r<a (core)

: 2.73)
n, r>a (cladding)

n(r)=i

in both cases.

Figure 2.21(a) shows a multimode step index fiber with a core diameter of around
50 um or greater, which is large enough to allow the propagatior of many modes
within the fiber core. This is illustrated in Figure 2.21(a) by the many different
possible ray paths through the fiber. Figure 2.21(b) shows a single-mode or
monomode step index fiber which allows the propagation of only one transverse
electromagnetic mode (typically HE,), and hence the core diameter must be of the
order of 2 to 10um. The propagation of a single mode is illustrated in

r T r
Refractive _l_- -
index n{r)
- [ i3 = 0 . .
/ q Claddin
m ke : g‘
n:

n
A >JX

(b)

Core

(@)
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Figure 2.21 The refractive index profile and ray transmission in step index fibers: (a)
multimode step index fiber; (b) single-mode step index fiber.
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Figure 2.21(b) as corresponding to a single ray path only (usually shown as the axia
ray) through the fiber.

The single-mode step index fiber has the distinct advantage of low intermod
dispersion (broadening of transmitted light pulses), as only one mode is
transmitted, whereas with multimode step index fiber considerable dispersion may
occur due to the differing group velocities of the propagating modes (see Section
3.10). This in turn restricts the maximum bandwidth attainable with multimode step
index fibers, especially when compared with single-mode fibers. However, for lower
bandwidth applications multinode fibers have several advantages over single-mode
fibers. These are:

(a) the use of spatially incoherent optical sources (e.g. most light emitting diodes)
which cannot be efficiently coupled to single-mode fibers;

(b) larger numerical apertures, as well as core diameters, facilitating easier coupling
to optical sources;

(c) lower tolerance requirements on fiber connectors.

Multimode step index fibers allow the propagation of a finite number of guided
modes along the channel. The number of guided modes is dependent upon the
physical parameters (i.e. relative refractive index difference, core radius) of the fiber
and the wavelengths of the transmitted light which are included in the normalized
frequency V for the fiber. It was indicated in Section 2.4.1 that there is a cutoff
value of normalized frequency V. for guided modes below which they cannot exist.
However, mode propagation does not entirely cease below cutoff. Modes may
propagate as unguided or leaky modes wnich can travel considerable distances
along the fiber. Nevertheless, it is the guided modes which are of paramount
importance in optical fiber communications as these are confined to the fiber over
its full length. It can be shown [Ref. 16] that the total number of guided modes
or mode volume M; for a step index fiber is related to the V¥ value for the fiber by
the approximate expression

M = —2— (274)

which allows an estimate of the number of guided modes propagating in a
particular multimode step index fiber..

Example 2.4
A multimode step index fiber with a core diameter of 80 um and a relative index
difference of 1.5% is operating at a wavelength of 0.85 um, If the core refractive
index is 1.48, estimate: (a) the normalized frequency for the fiber; (b) the number
of guided modes.
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Solution: (a) The normalized frequency may be obtained from Eq. (2.70) where:

27 x40 x 107%x 1.48
0.85x 107°

2T

V=57 am(2a) = (2% 0.015)i=75.8

{b) The total number of guided modes is given by Eq. (2.74) as:

_ VP _5745.6
T2 2
= 2873

Hence this fiber has a V¥ number of approximately 76, giving nearly 3000 guided
modes.

Therefore, as illustrated in Example 2.4, the optical power is launched into a
large number of guided modes, each having different spatial field distributions,
propagation constants, etc. In an ideal multimode step index fiber with properties
(i.e. relative index difference, core diameter) which are independent of distance,
there is no mode coupling, and the optical power launched into a particular mode
remains in that mode and travels independently of the power launched into the
other guided modes. Also, the majority of these guided modes operate far from
cutoff, and are well confined to the fiber core [Ref. 16]. Thus most of the optical
power is carried in the core region and not in the cladding. The properties of the
cladding (e.g. thickness) do not therefore significantly affect the propagation of
these modes.

2.4.4 Graded index fibers

Graded index fibers do not have a constant refractive index in the core® but a
decreasing core index n(r) with radial distance from a maximum value of n; at the
axis to a constant value n; beyond the core radius a in the cladding. This index
variation may be represented as:

ni(1 = 2A(rfa)*) r< a (core)

m(l -2A)i=n, r>a (cladding) (2.75)

n(ry= {
where A is the relative refractive index difference and « is the profile parameter
which gives the characteristic refractive index profile of the fiber core. Equation
(2.75) which is a convenient method of expressing the refractive index profile of the
fiber core as a variation of « allows representation of the step index profile when
« = o, a parabolic profile when a =2 and a triangular profile when.a =-1. This
range of refractive index profiles is illustrated in Figure 2.22.

. . . . .
Graded index fibers are therefore sometimes referred to as inhomogeneous core fibers.
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‘T Refractive index (n(r))

» Radial distance (r)

D b= - -

Core
axis
Figure 2.22 Possible fiber refractive index profiles for different values of «
(given in Eq. (2.75)).

The graded index profiles which at present produce the best results for multimode
optical propagation have a near parabolic refractive index profile core with o = 2.
Fibers with such core index profiles are well established and consequently when the
term ‘graded index’ is used without qualification it usually refers to a fiber with this
profile. For this reason in this section we consider the waveguiding properties of
graded index fiber with a parabolic refractive index profile core.

A multimode graded index fiber with a parabolic index profile core is illustrated
in Figure 2.23. It may be observed that the meridional rays shown appear to follow
curved paths through the fiber core. Using the concepts of geometric optics, the
gradual decrease in refractive index from the centre of the core creates many
refractions of the rays as they are effectively incident on a large number of high to
low index interfaces. This mechanism is illustrated in Figure 2.24 where a ray is

Refractive
index n(r)

Cladding f

(a (b)

Figure 2.23 The refractive index profile and ray transmission in a multimode graded
index fiber,
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Total internal reflection
I Refraction

N> N> N> N> > Ny et Cladding

Figure 2.24 An expanded ray diagram showing refraction at the various high to low
index interfaces within a graded index fiber, giving an overall curved ray path.

shown to be gradually curved, with an ever-increasing angle of incidence, until the
conditions for total internal reflection are met, and the ray travels back toward the
core axis, again being continuously refracted.

Multimode graded index fibers exhibit far less intermodal dispersion (see Section
3.10.2) than muitimode step index fibers due to their refractive index profile.
Although many different modes are excited in the graded index fiber, the different
group velocities of the modes tend to be normalized by the index grading. Again
considering ray theory, the rays travelling close to the fiber axis have shorter paths
when compared with rays which travel into the outer regions of the core. However.
the near axial rays are transmitted through a region of higher refractive index and
therefore travel with a lower velocity than the more extreme rays. This compensates
for the shorter path lengths and reduces dispersion in the fiber. A similar situation
exists for skew rays which follow longer helical paths, as illustrated in Figure 2.25.
These travel for the most part in the lower index region at greater speeds, thus
giving the same mechanism of mode transit time equalization. Hence, multimode
graded index fibers with parabolic or near parabolic index - profile cores have

Core axis

Core

Cladding (

Figure 2.25 A helical skew ray path within a graded tndex fiber.
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transmission bandwidths which may be orders of magnitude greater than
multimode step index fiber bandwidths. Consequently, although they are not
capable of the bandwidths attainable with single-mode fibers, such multimode
graded index fibers have the advantage of large core diameters (greater than 30 xm)
coupled with bandwidths suitable for long distance communication.

The parameters defined for step index fibers (i.e. NA, A, V') may be applied to
graded index fibers and give a comparison between the two fiber types. However,
it must be noted that for graded index fibers the situation is more complicated since
the numerical aperture is a function of the radial distance from the fiber axis.
Graded index fibers, therefore, accept less light than corresponding step index fibers
with the same relative refractive index difference.

" Electromagnetic mode theory may also be utilized with the graded profiles.
Approximate field solutions of the same order as geometric optics are often
obtained employing the WKB method from quantum mechanics after Wentzel,
Kramers and Brillouin [Ref. 22]. Using the WKB method modal solutions of the
guided wave are achieved by expressing the field in the form.
1 . . cos lp .

Er=3[Gi(r) exp[jS(r)] + Ga2(r) exp[—jS(r)]] (m)exp(mz) (2.76)
where G and § are assumed to be real functions of the radial distance r.

Substitution of Eq. (2.76) inio the scalar wave equation of the form given by Eq.
(2.61) (in which the constant refractive index of the fiber core n; is replaced by n(r))
and neglecting the second derivative of Gi(r) with respect to r provides approximate
solutions for the amplitude function Gi(r) and the phase function S(r). It may be
observed from the ray diagram shown in Figure 2.23 that a light ray propagating
in a graded index fiber does not necessarily reach every point within the fiber core.
The ray is contained within two cylindrical caustic surfaces and for most rays a
caustic does not coincide with the core—cladding interface. Hence the caustics
define the classical turning points of the light ray within the graded fiber core. These
turning points defined by the two caustics may be designated as occurring at r = r,
and r=r;.

The result of the WKB approximation yields an oscillatory field in the region
ri < r < ry between the caustics where:

Gi(r) = G2(r) = D [(n*(r)k?* - B*)r* - 1)} (2.77)

(where D is an amplitude coefficient) and

S() = 5 (27— g2y 4T 2.78)

Outside the interval 7; < r < r; the field solution must have an evanescent form.
In the region inside the inner caustic defined by r < r; and assuming | is not too
close to r =0, the field decays towards the fiber axis giving:

Gi(r) = D exp(jmx)[ [[* — (n*(r)k* — 8*)r¥) 2.79)
G2(r)=0 (2.80)
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where the integer /m is the radial mode number and
sin=i | 1wt~

uor

(2.81)

Also outside the outer caustic in the region r > r;, the field decays away from the
fiber axis and is described by the equations:

Gi(r)= D exp(jmx)| [I* — (n*(r)k? — 3*)yr’]* (2.82)
G:(r)=0 (2.83)
s=i |- wew - d{ (2.84)

The WKB method does not initially provide valid solutions of the wave equation
in the vicinity of the turning points. Fortunately, this may be amended by replacing
the actual refractive index profile by a linear approximation at the location of the
caustics. The solutions at the turning points can then be expressed in terms of
Hankel functions of the first and second kind of order } [Ref. 23]. This facilitates
the joining together of the two separate solutions described previously for inside
and outside the interval ry < r < r;. Thus the WKB theory provides an approximate
eigenvalue equation for the propagation constant 3 of the guided modes which
cannot be determined using ray theory. The WKB eigenvalue equation of which 38
is a solution is given by [Ref. 23]:

‘ [(nz(r)kl—az)rz—lz]%grf:(zm— 1)% (2.85)
Jr
where the radial mode number m = 1,2, 3 ... and determines the number of maxima
of the oscillatory field in the radial direction. This eigenvalue equation can only be
solved in a closed analytical form for a few simple refractive index profiles. Hence,
in most cases it must be solved approximately or with the use of numerical
techniques.

Finally the amplitude coefficient D may be expressed in terms of the total optical
power P within the guided mode. Considering the power carried between the
turning points r; and r, gives a geometric optics approximation of [Ref. 26]:

p = Yl Cﬂz_gp_%ﬁ
mwa-1

(2.86)

where

~‘ e xdx
Dia W@k = ghya’x? - 1)

I= (2.87)

The properties of the WKB solution may by observed from a graphical
representation of the integrand given in Eq. (2.78). This is shown in Figure 2.26,
together with the corresponding WKB solution. Figure 2.26 illustrates the functions
(n*(r)k* — %) and (/*/r?). The two curves intersect at the turning points r = r; and
r = r>. The oscillatory nature of the WKB solution between the turning points (i.e.



52 Optical fiber communications: principles and practice

(n*tnk* - 37

b

A

—_——
-

PP Iy
[ ] ey
PR -——-——_m[
~

U

Figure 2.26 Graphical representation of the functions (n*(nk’- g% and ('[r)
that are important in the WKB solution and which define the turning points r;
and r,. Also shown is an example of the corresponding WKB solution for a
guided mode where an oscillatory wave exists in the region between the
turning points.

when /r? < n(r)k* — 8%) which changes into a decaying exponential (evanescent)
form outside the interval r; < r < ry (i.e. when /2/r? > n*(r)k* - 3?) can also be
clearly seen.

It may be noted that as the azimuthal mode number / increases, the curve /%/r?
moves higher and the region between the two turning points becomes narrower. In
addition, even when / is fixed the curve (n%(r)k? — 8?) is shifted up and down with
alterations in the value of the propagation constant 3. Therefore, modes far from
cutoff which have large values of 3 exhibit more closely spaced turning points. As
the value of 8 decreases below mk, (n*(r)k* — 82) is no longer negative for large
values of r and the guided mode situation depicted in Figure 2.26 changes to one
corresponding to Figure 2.27. In this case a third turning point r=r3 is created
when at r = a the curve (n2(r)k? — 8?) becomes constant, thus allowing the curve
(12/,2) to drop below it. Now the field displays an evanescent, exponentially
decaying form in the region r, < r < r3, as shown in Figure 2.27. Moreover, for
r > r; the field resumes an oscillatory behaviour and therefore carries power away
from the fiber core. Unless mode cutoff occurs at 8 = nk the guided mode is no
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Figure 2.27 Similar graphical representation as that illustrated in Figure 2.26.
Here the curve (n%(r)k* - 3°) no longer goes negative and a third turning point
ry occurs. This corresponds to leaky mode solutions in the WKB method.

longer fully contained within the fiber core but loses power through leakage or
tunnelling into the cladding. This situation corresponds to the leaky modes
mentioned previously in Section 2.4.1.

The WKB method may be used to calculate the propagation constants for the
modes in a parabolic refractive index profile core fiber where, following Eq. (2.75):

2
ni(r)= nf(l - 2(‘—;) A) for r<a (2.88)
Substitution of Eq. (2.88) into Eq. (2.85) gives:
I 2 274
S [n%k2—32~2n%k2<§> A —%] dr=(m+H7 (2.89)

The integral shown in Eq. (2.89) can be evaluated using a change of variable from
r to u = r*. The integral obtained may be found in a standard table of indefinite
integrals [Ref. 27]. As the square root term in the resulting expression goes to zero
at the turning points (i.e. r=r; and r=r;), then we can write

2 2
B
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Solving Eq. (2.90) for 82 gives:

Zzn%kz[————’ ‘ZJ(ZA)(2m+1+1)] (2.91)
nika

It is interesting to note that the solution for the propagation constant for the
various modes in a parabolic refractive index core fiber given in Eq. (2.91) is exact
even though it was derived from the approximate WKB eigenvalue equation (Eq.
2.85). However; although Eq. (2.91) is an exact solution of the scalar wave equation
for an infinitely extended parabolic profile medium, the wave equation is only
an approximate representation of Maxwell’s equation. Furthermore, practical
parabolic refractive index profile core fibers exhibit a truncated parabolic
distribution which merges into a constant refractive index at the cladding. Hence
Eq. (2.91) is not exact for real fibers.

Equation (2.91) does, however, allow us to consider the mode number plane
spanned by the radial and azimuthal mode numbers m and /. This plane is displayed
in Figure 2.28, where each mode of the fiber described by a pair of mode numbers
is represented as a point in the plane. The mode number plane contains guided,
leaky and radiation modes. The mode boundary which separates the guided modes
from the leaky and radiation modes is indicated by the solid line in Figure 2.28. It
depicts a constant value of 3 following Eq. (2.91) and occurs when S = nk.
Therefore, all the points in the mode number plane lying below the line 8 = n k are
associated with guided modes, whereas the region above the line is occupied by
leaky and radiation modes. The concept of the mode plane allows us to count the
total number of guided modes within the fiber. For each pair of mode numbers m
and / the corresponding mode field can have azimuthal mode dependence cos /¢ or
sin /¢ and can exist in two possible polarizations (see Section 3.13). Hence the

- Mode boundary:

Guided fiber

modes \

.IO...O...

Figure 2.28 The mode number plane illustrating the mode boundary and the
guided fiber modes.
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modes are said to be fourfold degenerate.” If we define the mode boundary as the
function m = f(/), then the total number of guided modes M is given by

I max
M=4d So 1y dl (2.92)

as each representation point corresponding to four modes occupies an element of
unit area in the mode plane. Equation (2.92) allows the derivation of the total
number of guided modes or mode volume M, supported by the graded index fiber.
It can be shown [Ref. 23] that:

M, = (a j 2) (mka)*a (2.93)

Furthermore, utilizing Eq. (2.70), the normalized frequency V for the fiber when
A.< 1 is approximately given by:

V = nmka(a)} (2.94)
Substituting Eq. (2.94) into Eq. (2.93), we have:
o v?
M= (a " 2) (-?) (2.95)

Hence for a parabolic refractive index profile core fiber (a=2), M, = V2|4, which
is half the number supported by a step index fiber (a = o) with the same V value.

Axample 2.5
A graded index fiber has a core with a parabolic refractive index profile which has
a diameter of 50 um. The fiber has a numerical aperture of 0.2. Estimate the total
number of guided modes propagating in the fiber when it is -operating at a
wavelength of 1 um.
Solution: Using Eq. (2.69), the normalized frequency for the fiber is:

27 X 25 % 1076 % 0.2
1x10°8

=2—:— a(NA)=

=31.4

The mode volume may be obtained from Eq. (2.95) where for a parabolic profile:

Hence the fiber supports approximately 247 guided modes.

An exception to this are the modes that occur when / = 0 which are only doubly degenerate as cos /¢
becomes unity and sin /¢ vanishes. However, these modes represent only a small minority and therefore
may be neglected.
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2.5 Single-mode fibers

The advantage of the propagation of a single mode within an optical fiber is that
the signal dispersion caused by the delay differences, between different modes in a
multimode fiber may be avoided (see Section 3.10). Multimode step index fibers do
not lend themselves to the propagation of a single mode due to the difficulties of
maintaining single-mode operation within the fiber when mode conversion (i.e.
coupling) to other guided modes takes place at both input mismatches and fiber
imperfections. Hence, for the transmission of a single mode the fiber must be
designed to allow propagation of only one mode, whilst all other modes are
attenuated by leakage or absorption.

Following the preceding discussion of muitimode fibers, this may be achieved
through choice of a suitable normalized frequency for the fiber. For single-mode
operation, only the fundamental LPo; mode can exist. Hence the limit of single-
mode operation depends on the lower limit of guided propagation for the LP;
mode. The cutoff normalized frequency for the LP;; mode in step index fibers
occurs at V. = 2.405 (see Section 2.4.1). Thus single-mode propagation of the LPy;
mode in step index fibers is possible over the range:

0< V<2405 (2.96)

as there is no cutoff for the fundamental mode. It must be noted that there are in
fact two modes with orthogonal polarization over this range, and the term sing!
mode applies to propagation of light of a particular polarization. Also, it is
apparent that the normalized frequency for the fiber may be adjusted to within the
range given in Eq. (2.96) by reduction of the core radius, and possibly the relative
refractive index difference following Eq. (2.70) which, for. single-mode fibers, is
usually less than 1%.

Example 2.6
Estimate the maximum core diameter for an optical fiber with the same relative
refractive index difference (1.5%) and core refractive index (1.48) as the fiber given
in Example 2.4 in order that it may be suitable for single-mode operation. It may
be assumed that the fiber is operating at the same wavelength (0.85 um). Further,
estimate the new maximum core diameter for single-mode operation when the
relative refractive index difference is reduced by a factor of 10.

Solution: Considering the relationship given in Eq. (2.96), the maximum V value
for a fiber which gives single-mode operation is 2.4. Hence, from Eq. (2.70) the core
radius a is:

ge— YA _24x085x10"°
2xm(2A) 2x x 1.48 x (0.03)}

= 1.3 um
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Therefore the maximum core diameter for single-mode operation is approximately
2.6 um.

Reducing the relative refractive index difference by a factor of 10 and again using
Eq. (2.70) gives:

ae 2.4x085%x 107
27 % 1.48 x (0.003):

Hence the maximum core diameter for single-mode operation is now approximately
8 um.

=4.0 ym.

It is clear from Example 2.6 that in order to obtain single-mode operation with
a maximum V number of 2.4 the single-mode fiber must have a much smaller ¢ore
diameter than the equivalent multimode step index fiber (in this case by a factor of
32). However, it is possible to achieve single-mode operation with a slightly larger
core diameter, albeit still much less than the diameter of multimode step index fiber,
by reducing the relative refractive index difference of the fiber.* Both these factors
create difficulties with single-mode fibers. The small core diameters pose problems
with launching light into the fiber and with field jointing, and the reduced relative
refractive index difference presents difficulties in the fiber fabrication process.

Graded index fibers may also be designed for single-mode operation and some
specialist fiber designs do adopt such non-step index profiles (see Section 3.12).
However, it may be shown [Ref. 28] that the cutoff value of normalized frequency
V. to support a single mode in a graded index fiber is given by:

Ve =2.405(1 + 2/a)} (2.97)

Therefore, as in the step index case, it is possible to determine the fiber parameters
which give single-mode operation.

Example 2.7
A graded index fiber with a parabolic refractive index profile core has a refractive
index at the core axis of 1.5 and a relative index difference of 1%. Estimate the
maximum possible core diameter which allows single-mode operation at a
wavelength of 1.3 pm.
Solution: Using Eq. (2.97) the maximum value of normalized frequency for
single-mode operation is

V=2.4(1 +2/a)t = 2.4(1 +2/2)}
=2.4)2

* Practical values for single-mode step index fiber designed for operation at a wavelength of 1.3 um arc
A =0.3%, giving 2a¢=8.5 um.
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The maximum core radius may be obtained from Eq. (2.70) where:

R ) _242x13x10"°
27n,(24) 27 x 1.5 x (0.02)}

=3.3pum

Hence the maximum core diameter which allows single-mode operation is
approximately 6.6 um.

It may be noted that the critical value of normalized frequency for the parabolic
profile graded index fiber is increased by a factor of 42 on the step index case. This
gives a core diameter increased by a similar factor for the graded index fiber over
a step index fiber with the equivalent core refractive index (equivalent to the core
axis index), and the same relative refractive index difference.

The maximum V number which permits single-mode operation can be increased
still further when a graded index fiber with a triangular profile is employed. It is
apparent from Eq. (2.97) that the increase in this case is by a factor of |3 over a
comparable step index fiber. Hence, significantly larger core diameter single-mode
fibers may be produced utilizing this index profile. Such advanced refractive index
profiles, which came under serious investigation in the early 1980s [Ref. 29], have
now been adopted, particularly in the area of dispersion modified fiber design (see
Section 3.12).

A further problem with single-mode fibers with low relative refractive index
differences and low V values is that the electromagnetic field associated with the
LP,o mode extends appreciably into the cladding. For instance, with V values less
than 1.4, over half the modal power propagates in the cladding [Ref. 21}. Thus the
exponentially decaying evanescent field may extend significant distances into the
cladding. It is therefore essential that the cladding is of a suitable thickness, and
has low absorption and scattering losses in order to reduce attenuation of the mode.
Estimates [Ref. 30] show that the necessary cladding thickness is of the order of
50 um to avoid prohibitive losses (greater than 1 dBkm™') in single-mode fibers,
especially when additional losses resulting from microbending (see Section 4.8.1)
are taken into account. Therefore, the total fiber cross section for single-mode
fibers is of a comparable size to multimode fibers.

Another approach to single-mode fiber design which allows the ¥ value to be
increased above 2.405 is the W fiber [Ref. 32]. The refractive index profile for this
fiber is illustrated in Figure 2.29 where two cladding regions may be observed. Use
of such two step cladding allows the loss threshold between the desirable and
undesirable modes to be substantially increased. The fundamental mode will be
fully supported with small cladding loss when its propagation constant lies in the
range kn3 < 8 < kn;.

If the undesirable higher order modes which are excited or converted to have
values of propagation constant 8 < kn3, they will leak through the barrier layer
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Figure 2.29 The retfractive index profile for a single-mode W fiber.

between a; and a» (Figure 2.29) into the outer cladding region n;. Consequently
these modes will lose power by radiation into the lossy surroundings. This design
can provide single-mode fibers with larger core diameters than can the conventional
single cladding approach which proves useful for easing jointing difficulties; W
fibers also tend to give reduced losses at bends in comparison with conventional
single-mode fibers.

Although single-mode fibers have only relatively recently emerged (i.e. since
1983) as a viable optical communication medium they have quickly become the
dominant and the most widely used fiber type within telecommunications.* Major
reasons for this situation are as follows: '

1. They currently exhibit the greatest transmission bandwidths and the lowest losses
of the fiber transmission media (see Chapter 3).

. They have a superior transmission quality over other fiber types because of the
absence of modal noise (see Section 3.10.3).

3. They offer a substantial upgrade capability (i.e. future proofing) for future wide
bandwidth services using either faster optical transmitters and receivers or
advanced transmission techniques (e.g. coherent technology, see Chapter 12).

4. They are compatible with the developing integrated optics technology (see
Chapter 10).

5. The above (1) to (4) provide a confidence that the installation of single-mode
fiber will provide a transmission medium which will have adequate performance
such that it will not require replacement over its twenty-plus-year anticipated
lifetime.

ro

At present the most commonly used single-mode fibers employ a step index (or near

* Multimode fibers are still finding extensive use within more localized communications (e.g. in data
links and local area nctworks).
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step index) profile design and are dispersion optimized (see Section 3.11.2) for
operation in the 1.3 um wavelength region. These fibers are either of a matched-
cladding (MC) or a depressed-cladding (DC) design, as illustrated in Figure 2.30. In
the conventional MC fibers, the region external to the core has a constant uniform
refractive index which is slightly lower than the core region, typically consisting of
pure silica. Alternatively when the core region comprises pure silica then the lower
index cladding is obtained through fluorine doping. A mode-field diameter (MFD)
(see Section 2.5.2) of 10 um is typical for MC fibers with relative refractive index
differences of around 0.3%. However, improved bend loss performance (see
Section 3.6) has been achieved in the 1.55 um wavelength region with reduced
MEDs of about 9.5 um and relative refractive index differences of 0.37%. [Ref.
40].

A more recent experimental MC fiber design employs a segmented core as shown
in Figure 2.30(b) [Ref. 41]. Such a structure provides conventional single-mode
dispersion optimized performance at wavelengths around 1.3 gm but is multimoded
with a few modes (two or three) in the shorter wavelength region around 0.8 pm.
The multimode operating region is intended to help relax both the tight tolerances
involved when coupling LEDs to such single-mode fibers (see Section 7.3.6) and
their connectorization. Thus segmented core fiber of this type could find use in

(@) (<) At =0.25%
A-=0.12%
d=8.3 (ym)

(b) (d)

Figure 2.30 Single-mode fiber step index profiles optimized for operation at a
wavelength of 1.3 um: (a) conventional matched-cladding design; (b) segmented core
matched-cladding design; (c) depressed-cladding design; (d) profile specifications of a
depressed-cladding fiber [Ref. 42].
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applications which require an inexpensive initial solution but upgradeability to
conventional singje-mode fiber performance at the 1.3 pm wavelength in the future.

In the DC fibers shown in Figure 2.30 the cladding region immediately adjacent
to the core is of a lower refractive index than that of an outer cladding region. A
typical MFD (see Section 2.5.2) of a DC fiber is 9 um with positive and negative
relative refractive index differences of 0.25% and 0.12% (see Figure 2.30(d)) [Ref.
42].

2.5.1 Cutoff wavelength

It may be noted by rearrangement of Eq. (2.70) that single-mode operation only
occurs above a theoretical cutoff wavelength A given by:
_2man,

A= v (24): (2.98)

where V¢ is the cutoff normalized frequency. Hence X is the wavelength above
which a particular fiber becomes single-moded. Dividing Eq. (2.98) by Eq. (2.70)
for the same fiber we obtain the inverse relationship:

A_V

N Ve
Thus for step index fiber where V. = 2.405, the cutoff wavelength is given by [Ref.
43]:

2.99)

-
o ~2.405
An effective cutoff wavelength has been defined by the CCITT* [Ref. 44] which is
obtained from a 2 m length of fiber containing a single 14 cm radius loop. This
definition was produced because the first higher order LP;; mode is strongly
affected by fiber length and curvature near cutoff. Recommended cutoff wavelength
values for primary coated fiber range from 1.1 to 1.28 um for single-mode fiber
designed for operation in the 1.3 um wavelength region in order to avoid modal
noise and dispersion problems. Moreover, practical transmission systems are
generally operated close to the effective cutoff wavelength in order to enhance the
fundamental mode confinement, but sufficiently distant from cutoff so that no
power is transmitted in the second order LP;; mode.

Ac (2.100)

Example 2.8

Determine the cutoff wavelength for a step index fiber to exhibit single-mode
operation when the core refractive index and radius are 1.46 and 4.5 um,
respectively, with the relative index difference being 0.25%.

* Recommendation G 652.
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Solution: Using Eq. (2.98) with V. = 2.405 gives:

_2man,24)} _24.5x 1.46(0.005)
T 2.405 2.405

=1.214 ym
= 1214 nm

A

Hence the fiber is single-moded to a wavelength of 1214 nm.

2.5.2 Mode-field diameter and spot size

Many properties of the fundamental mode are determined by the radial extent of
its electromagnetic ficld including losses at launching and jointing, microbend
losses, waveguide dispersion and the width of the radiation pattern. Therefore, the
mode-field diameter (MFD) is an important parameter for characterizing single-
mode fiber properties which takes into account the wavelength dependent field
penetration into the fiber cladding. In this context it is a better measure of the
functional properties of single-mode fiber than the core diameter. For step index
and graded (near parabolic profile) single-mode fibers operating near the cutoff
wavelength \, the field is well approximated by a Gaussian distribution (see Section
2.5.5). In this case the MFD is generally taken as the distance between the opposite
1/e=0.37 field amplitude points and the power 1/ = 0.135 points in relation to
the corresponding values on the fiber axis, as shown in Figure 2.31.
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Figure 2.31 Field amplitude distribution E(r) of the fundamental mode in a
single-mode fiber illustrating the mode-field diameter (MFD) and spot size (wo)
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Another parameter which is directly related to the mode-field diameter of a
single-mode fiber is the spot size (or mode-field radius) wo. Hence MFD = 2 wy,
where wo is the nominal half width of the input excitation (see Figure 2.31). The
MFD can therefore be regarded as the single-mode analog of the fiber core diameter
in multimode fibers [Ref. 45]. However, for many refractive index profiles and at
typical operating wavelengths the MFD is slightly larger than the single-mode fiber
core diameter.

Often, for real ﬁb_ers and those with arbitrary refractive index profiles the radial
field distribution is not strictly Gaussian and hence alternative techniques have been
proposed. However, the problem of defining the MFD and spot size for non-
Gaussian field distributions is a difficult one and at least eight definitions exist [Ret.
19] . Nevertheless, a more general definition based on the second moment of the far
field and known as the Petermann I definition {Ref. 46} is recommended by the
CCITT. Moreover, good agreement has been obtained using this definition for the
MFD using different measurement techniques on arbitrary index fibers [Ref. 47].

2.5.3 Effective refractive index

The rate of change of phase of the fundamental LPy, mode propagating along a
straight fiber is determined by the phase propagation constant g3 {sce Section 2.3.2).
It is directly related to the wavelength of the LPq; mode Aoy by the factor 2, since
3 gives the increase in phase angle per unit fength. Hence:

27

Bror = 2w, OF Aoy = 3 (2.10D)

Moreover, it is convenient to define an effective refractive index for single-mode
fiber, sometimes referred to as a phase index or normalized phase change coefficient
[Ref. 48] n.q, by the ratio of the propagation constant of the fundamental mode
to that of the vacuum propagation constant:

Mg = f (2.102)
Hence, the wavelength of the fundamental mode Aoy is smaller than the vacuum
wavelength \ by the factor 1/n.y where:

Aot =~)\— (2.103)

Nety

It should be noted that the fundamental mode propagates in a medium with a
refractive index n(r) which is dependent on the distance r from the fiber axis. The
effective refractive index can therefore be considered as an average over the
refractive index of this medium [Ref. 19].

Within a normally clad hber, not depressed-cladded fibers (see Section 2.5), at
long wavelengths (i.c. small }” values) the mode-field diameter is large compared to
the core diameter and hence the electric field extends far into the cladding region.
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In this case the propagation constant 3 will be approximately equal to n:k (i.e. the
cladding wavenumber) and the effective index will be similar to the refractive index
of the cladding n,. Physically, most of the power is transmitted in the cladding
material. At short wavelengths, however, the field is concentrated in the core region
and the propagation constant 8 approximates to the maximum wave-number n,k.
Following this discussion, and as indicated previously in Eq. (2.62), then the
propagation constant in single-mode fiber varies over the interval mk < 8 < nik.
Hence, the effective refractive index will vary over the range n; < neg < n;.

In addition, a relationship between the effective refractive index and the
normalized propagation constant b defined in Eq. (2.71) as:

(B k)2_n2 BZ_nZk.’.
R P @109

may be obtained. Making use of thé mathematical relation, A%- B*=
(A + B)(A - B), Eq. (2.104) can be written in the form:

___(B+ nmk)(B - n:k)
T (mk + mk)(mk - nyk) (2.105)

However, taking regard of the fact that 8 = nk, then Eq. (2.105) becomes:

_ B-nmk :B/k—nz
mk—nmk nyi—nm

Finally, in Eq. (2.102) n.g is equal to B[k, therefore:

p o Nen = 2 (2.106)
ny—n;

0.6

Normalized
propagation 0.4
constant b

0.2
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Normalized frequency V

Figure 2.32 The normalized propagation constant (b) of the fundamental mode
in a step index fiber shown as a function of the normalized frequency (V).
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The dimensionless parameter b which varies between 0 and 1 is particularly useful
in the theory of single-mode fibers because the relative refractive index difference
is very small giving only a small range for 8. Moreover, it allows a simple graphical
representation of results to be presented as illustrated by the characteristic shown
in Figure 2.32 of the normalized phase constant of 8 as a function of normalized
frequency V in a step index fiber.* It should also be noted that b(¥) is a universal
function which does not depend explicitly on other fiber parameters.

Example 2.9
Given that a useful approximation for the eigenvalue of the single-mode step index
fiber cladding W is [Ref. 43]}:

W(V) = 1.1428 V — 0.9960

deduce an approximation for the normalized propagation constant b(}V).
Solution: Substituting from Eq. (2.68) into Egq. (2.71), the normalized
propagation constant is given by:

V2_w2 WZ
b(V)=1—(———V“f—')‘=—‘7f

Then substitution of the approximation above gives:
(1.1428 V — 0.9960)>
VZ

2
= (1.14zs_ﬂ9"—°)

b(V) =

14

The relative error on this approximation for b(V) is less than 0.2% for
1.5 < ¥ < 2.5 and less than 2% for 1 < V < 3 [Ref. 43].

2.5.4 Group delay and mode delay factor

The transit time or group delay 7, for a light pulse propagating along a unit length
of fiber is the inverse of the group velocity v; (see Section 2.3.3). Hence:

1 dg _1dg
o e S — I = e 2.107
8 v, dw cdk ( )

The group index of a uniform plane wave propagating in a homogeneous medium

* For step index fibers the eigenvalue U, which determines the radial field distribution in the core, can
be obtained from the plot of b versus V because from Eq. Q@.71), U= ¥V*(1 - b).
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has been determined following Eq. (2.40) as:

c
Ng=—
8 Ug
However, for a single-mode fiber, it is usual to define an effective group index* Nee
[Ref. 48] by:
c
Nge = — (2.108)
Ug
where v, is considered to be the group velocity of the fundamental fiber mode.
Hence, the specific group delay of the fundamental fiber mode becomes:

= Nsc
c

g (2.109)
Moreover, the effective group index may be written in terms of the effective
refractive index n.qs defined in Eq. (2.102) as:

dneg

Nge=neg— X ax

(2.110)
It may be noted that Eq. (2.110) is of the same form as the denominator of
Eq. (2.40) which gives the relationship between the group index and the refractive
index in a transparent medium (planar guide).

Rearranging Eq. (2.71) 8 may be expressed in terms of the relative index
difference A and the normalized propagation constant b by the following
approximate expression:

B=k((nt-nd)b+nd]’ =kna{l + ba] @.111)

Furthermore, approximating the relative refractive index difference as (n; — ny)n,
for a weakly guiding fiber where A < 1, we can use the approximation [Ref. 16]:

n;—n2~Ng1~N52

2.112
P Nes ( )

where N, and Nj; are the group indices for the fiber core and cladding regions

respectively. Substituting Eq. (2.111) for 8 into Eq. (2.107) and using the

approximate expression given in Eq. (2.112) we obtain the group delay per unit
distance as:

1 d(vb

ne=e [Mz»r (Net = N2 —%V—)} @.113)

The dispersive properties of the fiber core and the cladding are often about the

same and therefore the wavelength dependence of A can be ignored [Ref. 19].

'N,e may also be referred to as the group index of the single-mode waveguide.
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Figure 2.33 The mode delay factor (d(Vbh)[dV) for the fundamental mode in a
step index fiber shown as a function of normalized frequency (V).

Hence the group delay can be written as:

c av

The initial term in Eq. (2.114) gives the dependence of the group delay on
wavelength caused when a uniform plane wave is propagating in an infinitely
extended medium with a refractive index which is equivalent to that of the fiber
cladding. However, the second term results from the waveguiding properties of the
fiber only and is determined by the mode delay factor d(Vh )/dV, which describes
the change in group delay caused by the changes in power distribution between the
fiber core and cladding. The mode delay factor [Ref. 50] is a further universal
parameter which plays a major part in the theory of single-mode fibers. Its variation
with normalized frequency for the fundamental mode in a step index fiber is shown
in Figure 2.33.

! [ o+ mpa 300) (2.114)

2.5.5 The Gaussian approximation

The field shape of the fundamental guided mode within a single-mode step index
fiber for two values of normalized frequency is displayed in Figure 2.34. As may
be cxpected, considering the discussion in Section 2.4.1, it has the form of a Bessel
function (Jo(r)) in the core region matched to a modified Bessel function (Ka(r))
in the cladding. Depending on the value of the normalized frequency a significant
proportion of the modal power is propagated in the cladding rcgion, as mentioned
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Figure 2.34 Field shape of the fundamental mode for normalized frequencies,
V=15and V=24.

earlier. Hence, even at the cutoff value (i.e. V.) only about 80% of the power
propagates within the fiber core.

It may be observed from Figure 2.34 that the shape of the fundamental LPy,
mode is similar to a Gaussian shape, which allows an approximation of the exact
field distribution by a Gaussian function.® The approximation may be investigated
by writing the scalar wave equation Eq. (2.27) in the form:

V2 + n%ky =0 (2.115)

where k is the propagation vector defined in Eq. (2.33) and n(x, y) is the refractive
index of the fiber, which does not generally depend on z, the coordinate along the
fiber axis. It should be noted that the time dependence exp(jw?) has been omitted
from the scalar wave equation to give the reduced wave equationt in Eq. (2.115)
[Ref. 23]. This representation is valid since the guided modes of a fiber with a small
refractive index difference (i.e. A < 1) have one predominant transverse field
component, for example E,. By contrast E, and the longitudinal component are
very much smaller [Ref. 23].

The field of the fundamental guided mode may therefore be considered as a
scalar quantity and need not be described by the full set of Maxwell’s equations.
Hence Eq. (2.115) may be written as:

Vio +nikl¢ =0 (2.116)

where ¢ represents the dominant transverse electric field component.

The near Gaussian shape of the predominant transverse field component of the
fundamental mode has been demonstrated [Ref. 51] for fibers with a wide range
of refractive index distributions. This proves to be the case not only for the LPq,

However, it should be noted that Ko (r) decays as exp( — r) which is much slower than a true Gaussian.
Eq. (2.115) is also known as the Helmholtz equation.
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mode of the step index' fiber but also for the modes with fibers displaying arbitrary
graded refractive index distributions. Therefore, the predominant electric field
component of the single guided mode may be written as the Gaussian function
[Ref. 23}:

1

0= <3) L exp (= rfwid) exp (~ iB2) @.117)
T/ Wo

where the radius parameter r> = x>+ y?, wo is a width parameter which is often

called the spot size or radius of the fundamental mode (see Section 2.5.2) and 3 is

the propagation constant of the guided mode field.

The factor preceding the exponential function is arbitrary and is chosen for
rormalization purposes. If it is accepted that Eq. (2.117) is to a good
approximation the correct shape [Ref. 26], then the parameters B and wo may be
obtained either by substitution [Ref. 52] or by using a variational principle [Ref.
26]. Using the latter tecnnique solutions of the wave equation, Eq. (2.116), are
claimed to be functions of the minimum integral:

J= gy [(V4)- (V%) ~n*k?¢ $*] dV = min 2.118)

where the asterisk indicates complex conjugation. The integration range in Eq.
(2.118) extends over a large cylinder with the fiber at its axis. Moreover, the length
of the cylinder L is arbitrary and its radius is assumed to tend towards infinity.
Use of variational calculus [Ref. 53] indicates that the wave equation Eq. (2.116)
is the Euler equation of the variational expression given in Eq. (2.118). Hence, the
functions that minimize J satisfy the wave equation. Firstly, it can be shown [Ref.
23] that the minimum value of J is zero if ¢ is a legitimate guided mode field. We
do this by performing a partial integration Eq. (2.118) which can be written as:

J= g 6% (V) ds—g (Vi + n2k2¢]o* dV (2.119)
). .

where the surface element ds represents a vector in a direction normal to the outside
of the cylinder. However, the function ¢ for a guided mode disappears on the
curved cylindrical surface with infinite radius. In this case the guided mode field
may be expressed as:

¢ = ¢(x, y) exp (—jBz) (2.120)

It may be observed from Eq. (2.120) that the z dependence is limited to the
exponential function and therefore the integrand of the surface integral in Eq.
(2.119) is independent of z. This indicates that the contributions to the surface
integral from the two end faces of the cylinder are equal in value, opposite in sign
and independent of the cylinder length. Thus the entire surface integral goes to
zero. Moreover, when the function ¢ is a solution of the wave equation, the volume
integral in Eq. (2.119) is zero and hence J is also equal to zero.
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The variational expression given in Eq. (2.118) can now be altered by substituting
Eq. (2.120). In this case the volume integral becomes an integral over the infinite
cross section of the cylinder (i.e. the fiber) which may be integrated over the length
coordinate z. Integration over z effectively multiplies the remaining integral over the
cross section by the cylinder length L because the integrand is independent of z.
Hence dividing by L we can write:

=1 | _1wh@dn - ek -p188M dxdy @2

where the operator V; indicates the transverse part (i.e. the x and y derivatives)
of A.

We have now obtained in Eq. (2.121) the required variational expression that will
facilitate the determination of spot size and propagation constant for the guided
mode field. The latter parameter may be obtained by solving Eq. (2.121) for 82 with
J =0, as has been proven to be the case for solutions of the wave equation. Thus:

S j (k33" - (V$)(%d™)] dx dy
Bz= -0 -0

g:, S:, $6* dx dy (2.122)

Equation (2.122) allows calculation of the propagation constant of the fundamental
mode if the function ¢ is known. However, the integral expression in Eq. (2.122)
exhibits a stationary value such that it remains unchanged to the first order when
the exact mode function ¢ is substituted by a slightly perturbed function. Hence a
good approximation to the propagation constant can be obtained using a function
that only reasonably approximates to the exact function. The Gaussian approxi-
mation given in Eq. (2.117) can therefore be substituted into Eq. (2.122) to obtain:

B = [%‘g S: rﬁz(r) exp (—2r%/wf) d’] —f‘g (2.123)

Two points should be noted in relation to Eq. (2.123). Firstly, following Marcuse
[Ref. 23] the normalization was picked to bring the denominator of Eq. (2.122) to
unity. Secondly, the stationary expression of Eq. (2.123) was obtained from Eq.
(2.122) by assuming that the refractive index was dependent only upon the radial
coordinate r. This condition is, however, satisfied by most common optical fibre
types.

Finally, to derive an expression for the spot size wo we again make use of the
stationary property of Eqs. (2.122) and (2.123). Hence, if the Gaussian function of
Eq. (2.117) is the correct mode function to give a value for wo, then 82 will not alter
if wp is changed slightly. This indicates that the derivative of 8% with respect to wo
becomes zerc (i.e. deldwo =0). Therefore, differentiation of Eq. (2.123) and
setting the result to zero yields:

o 2
1+2k2§ r(zf—x)nz(r) exp (- 2r}fwd) dr=0 @.124)
0 wo
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Equation (2.124) allows the Gaussian approximation for the fundamental mode
within single-mode fiber to be obtained by providing a value for the spot size wo.
This value may be utilized in Eq. (2.123) to determine the propagation constant 3.

For step index profiles it can be shown [Ref. 52] that an optimum value of the
spot size wo divided by the core radius is only a function of the normalized
frequency V. The optimum values of wo/a can be approximated to better than 1%
accuracy by the empirical formula [Ref. 52]:

WO _0.65+1.619V i +2.879V " ° (2.125)
a
AN ‘ A\ 6
~0.65+1.619(2.40 ) '+ 2.879(2.405 x
;
wo = a[0.65 + 0.434(%) + 0.0149(%> } (2.126)

The approximate expression for spot size given in Eq. (2.126) is frequently used to
determine the parameter for step index fibers over the usual range of MX. (i.e. 0.8
to 1.9) [Ref. 43].

Example 2.10
Estimate the fiber core diameter for a single-mode step index fiber which has a MFD
of 11.6 pm when the normalized frequency is 2.2,

Solution: Using the Gaussian approximation, from Eq. (2.125) the fiber core
radius is:

— wo - —
065+ 1.619(V) i+ 2.879(.; °

a

o sexd0®
T 065+ 1.619(2.2) 7+ 2.8792.2)"°
= 4.95 yum

Hence the fiber core diameter is 9.9 pm.

The accuracy of the Gaussian approximation has also been demonstrated for
eraded index fibers [Ref. 54], having @ refractive index profile given by Eq. (2.76)
(i.c. power law profiles in the core region). When the near parabolic refractive index
profile is considered (i.c. o = 2) and the square law medium is assumed to extend
{o infinity rather than to the cladding where n(r)=n2, for? 2 a (Eq. (2.76)); then
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the Gaussian spot size given in Eq. (2.124) reduces to:

L
wh=-L (“) (2.127)

It is interesting to note that the above relationships for wo and 3 in this case are
identical to the solutions obtained from exact analysis of the square law medium
[Ref, 26].

0.4+ -
0.2+ =
0.0 1 i 1 i L N
0 1 2 3 4 5 6 7
1%

Figure 2.35 Comparison of wyfa approximation obtained from Eqs. (2.123) and
(2.124) (broken lines) with values obtained from numerical integration of the
wave equation and subsequent optimization of its width (solid lines).
Reproduced with permission from D. Marcuse, ‘Gaussian.approximation of the
fundamental modes of graded-index fibers’, /. Opt. Soc. Am., .68, p. 103, 1978.
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Numerical solutions of Egs. (2.123) and (2.124) are shown in Figure 2.35 (broken
lines) for values of a of 6 and « for profiles with constant refractive indices in the
cladding region [Ref. 51]. In this case Eqgs. (2.123) and (2.124) cannot be solved
analytically and computer solutions must be obtained. The solid lines in Figure 2.35
show the corresponding solutions of the wave equation, also obtained by a direct
numerical technique. These results for the spot size and propagation constant are
provided for comparison as they are not influenced by the prior assumption of
Gaussian shape. '

The Gaussian approximation ror the transverse field distribution is very much
simpler than the exact solution and is very useful for calculations involving both
launching efficiency at the single-mode fiber input as well as coupling losses at
splices or connectors. In this context it describes very well the field inside the fiber
core and provides good approximate values for the guided mode ‘propagation
constant. It is a particularly good approximation for fibers operated near the cutoff
wavelength of the second order mode [Ref. 26] but when the wavelength increases,
the approximation becomes less accurate. In addition, for single-mode fibers with
homogeneous cladding, the true field distribution is never exactly Gaussian since the
evanescent field in the cladding tends to a more exponential function for which the
Gaussian provides an underestimate. :

However, for the calculations involving cladding absorption, bend losses,
crosstalk between fibers and the properties of directional couplers, then the
Gaussian approximation should not be utilized [Ref. 26]. Better approximations
for the field profile in these cases can, however, be employed such as the
exponential function [Ref. 55}, or the modified Hankel function of zero order
[Ref. 56], giving the Gaussian-exponential and the Gaussian—Hankel
approximations respectively. Unfortunately, these approximations lose the major
simplicity of the Gaussian approximation, in which essentially one parameter (the
spot size) defines the radial amplitude distribution, because they necessitate two
parameters to characterize the same distribution.

2.5.6 Equivalent step index methods

Another strategy to obtain approximate values for the cutoffl wavelength and spot
size in graded index single-mode fibers (or arbitrary refractive index profile fibers)
is to define an equivalent step index (EST) fiber on which to model the fiber to be
investigated. Various methods have been proposed in the literature [e.g. Refs. 57
to 62] which commence from the observation that the fields in the core regions of
graded index fibers often appear similar to the fields within step index fibers. Hence,
as step index fiber characteristics are well known, it is convenient to repiace the
exact methods for graded index single-mode fibers [Refs. 63, 64] by approximate
techniques based on step index fibers. In addition, such ESI methods allow the
propagation characteristics of single-mode fibers to be represenied by a few
parameters.
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Several different suggestions have been advanced for the choice of the core radius
aes1, and the relative index difference Agsj, of the ESI fiber which lead to good
approximations for the spot size (and hence joint and bend losses) for the actual
graded index fiber. They are all conceptually related to the Gaussian approximation
(see Section 2.5.5) in that they utilize the close resemblance of the field distribution
of the LPo: mode to the Gaussian distribution within single-mode fiber. An early
proposal for the ESI method [Ref. 58] involved transformation of the basic fiber
parameters following:

as = Xa, Vi=YV, NA, = (Y| X)NA (2.129)

where the subscript s is for the ESI fiber and X, Y are constants which must be
determined. However, these ESI fiber representations are only valid for a particular
value of normalized frequency ¥ and hence there is a different X, Y pair for each
wavelength. The transformation can be carried out either on the basis of compared
radii or relative refractive index differences. Figure 2.36 compares the refractive
index profiles and the electric field distributions for two graded index fibres
(o = 2, 4) and their ESI fibers. It may be observed that their fields differ slightly only
near the axis.

An alternative ESI technique is to normalize the $pot size wo with respect to an
optimum effective fiber core radius a.¢ [Ref. 61]. This latter quantity is obtained
from the experimental measurement of the first minimum (angle 6mis) in the
diffraction pattern using transverse illumination of the fiber immersed in an index
matching fluid. Hence:

aco = 3.832/k sin Opin (2.130)

where k = 2m/\. In order to obtain the full comparison with single-mode step index
fiber, the results may be expressed in terms of an effective normalized frequency Veg
which relates the cutoff frequencies/wavelengths for the two fibers:

Ve = 2.405(V[ V) = 2.405(A/\) (2.131)

The technique provides a dependence of wo/a.q on Vg which is almost identical for
a reasonably wide range of profiles which are of interest for minimizing dispersion
(i.e. 1.5 < Vg < 2.4).

A good analytical approximation for this dependence is given by [Ref. 61]:

5’2 =0.6043 + 1.755 Vd + 2.78 Vo (2.132)
eff

Refractive index profile dependent deviations from the relationship shown in
Eq. (2.132) are within *2% for general power law graded index profiles.
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Figure 2.36 Refractive .index distributions a(r) and electric field distributions
Etr) for graded index fibers and their ESI fibers for: (@) a =2, V=13.5; (b) a =4,
V=3.0. The field distributions for the graded index and corresponding ESI
protiles are shown by solid circles and open triangles respectively. Reproduced
with permission from H. Matsumura and T. Suganuma, Appl. Opt., 19, p. 3151,
1980.

Example 2.11

A parabolic profile graded index single-mode fiber designed for operation at a
wavelength of 1.30 um has a cutoff wavelength of 1.08 um. From experimental
measurement it is established that the first minimum in the diffraction pattern
occurs at an angle of 12°. Using an ESI technique, determine the spot size at the
operating wavelength.
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Solution: Using Eq. (2.130), the effective core radius is:

3.832N  3.832x1.30x10°°
27 Sin Omin 27 sin 12°

= 3.81 um

eff =

The effective normalized frequency can be obtained from Eq. (2.131) as:

Ve = 2.405 l_zaos%wzoo

Hence the spot size is given by Eq. (2.132) as:

wo = 3.81x 107°[0.6043 + 1.755(2.00) % + 2.78(2.00) "9
=4.83 um

Other ESI methods involve the determination of the equivalent parameters from
experimental curves of spot size against wavelength [Ref. 62]. All require an
empirical formula, relating spot size to the normalized frequency for a step index
fiber, to be fitted by some means to the data. The usual empirical formula employed
is that derived by Marcuse for the Gaussian approximation and given in Eq.
(2.125). An altematlve formula which is close to Eq (2.125) is provided by Snyder
[Ref, 65]

wo=a(ln V)i (2.133)

However, it is suggested [Ref. 62] that the expression given in Eq. (2.133) is
probably less accurate than that provided by Eq. (2.125).

A cutoff method can also be utilized to obtain the ESI parameters [Ref. 66] .
this case the cutoff wavelength Ae and spot size wo are known. Therefore
substituting ¥ = 2.405 into Eq. (2.125) gives:

wo = 1.09%ars; or 2ags; = 1.820wo (2.134)
Then using Eq. (2.70) the ESI relative index difference is:
Aes = (0. 293/"1) Ne/2ags1 )’ (2.135)

where n; is the maximum refractive index of the fiber core.

Example 2.12

Obtain the ESI relative refractive index difference for a graded index fiber which
has a cutoff wavelength and spot size of 1.190 um and 5.2 um respectively. The
maximum refractive index of the fiber core is 1.485.
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Solution: The ESI core radius may be obtained from Eq. (2.134) where:
2aps; = 1.820 x 5.2 x 107° = 9.464 ym
Using Eq. (2.135), the ESI relative index difference is given by:

Agst = (0.293/1.485%)(1.190/9.464)°
=2.101 x 1077 or 0.21%

Alternatively, performing a least squares fit on Eq. (2.125) provides ‘best values’
for the ESI diameter (2ags;) and.relative index difference (Agsi) [Ref. 62]. It must
be noted, however, that these best values are dependent on the application and the
least squares method appears most useful in estimating losses at fiber joints [Ref.
67]. In addition, recent work [Ref. 68] has attempted to provide a more consistent
relationship between the ESI parameters and the fiber mode-field diameter. Overall,
the concept of the ESI fiber has been relatively useful in the specification of
standard matched-cladding and depressed-cladding fibers by their equivalent aesi
and Ags; values. Unfortunately, ESI methods are unable accurately to predict
mode-field diameters and waveguide dispersion in dispersion shifted and dispersion
flattened (see Section 3.12) fibers [Ref. 19].

Problems

2.1 Using simple ray theory, describe the mechanism for the transmission of light within
an optical fiber. Briefly discuss with the aid of a suitable diagram what is meant by the
acceptance angle for an optical fiber. Show how this is related to the fiber numerical
aperture and the refractive indices for the fiber core and cladding.

An optical fiber has a numerical aperture of 0.20 and a cladding refractive index of
1.59. Determine:

(a) the acceptance angle for the fiber in water which has a refractive index of 1.33;
(b) the critical angle at the core—cladding interface.

Comment on any assumptions made about the fiber.

2.2 he velocity of light in the core of a step index fiber is 2.01 X 108 ms ™!, and the critical
angle at the core—cladding interface is 80°. Determine the numerical aperture and the
acceptance angle for the fiber in air, assuming it has a core diameter suitable for
consideration by ray analysis. The velocity of light in a vacuum is 2.998 x 10° ms ™!

2.3 Define the relative refractive index difference for an optical fiber and show how it may
be related to the numerical aperture.

A step index fiber with a large core diameter compared with the wavelength of the
transmitted light has an acceptance angle in air of 22° and a relative refractive index
difference of 3%. Estimate the numerical aperture and the critical angle at the
core—cladding interface for the fiber.

2.4 A step index fiber has a solid acceptance angle in air of 0.115 radians and a relative
refractive index difference of 0.9%. Estimate the speed of light in the fiber core.

t
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2.5

2.6

2.7

2.8

2.9

2.10

2.13

'

Briefly indicate with the aid of suitable diagrams the difference between meridional and
skew ray paths in step index fibers.

Derive an expression for the acceptance angle for a skew ray which changes direction
by an angle 27 at each reflection in a step index fiber in terms of the fiber NA.and 7.
It may be assumed that ray theory holds for the fiber.

A step index fiber with a suitably large core diameter for ray theory considerations
has core and cladding refractive indices of 1.44 and 1.42 respectively. Calculate the
acceptance angle in air for skew rays which change direction by 150° at each reflection.
Skew rays are accepted into a large core diameter (compared to the wavelength of the
transmitted light) step index fiber in air at a maximum axial angle of 427, Within the
fiber they change direction by 90° at each reflection. Determine the acceptance angle
for meridional rays for the fiber in air.

Explain the concept of electromagnetic modes in relation to a planar optical waveguide.

Discuss the modifications that may be made to electromagnetic mode theory in a
planar waveguide in order to describe optical propagatior in a cylindrical fiber.
Briefly discuss, with the aid of suitable diagrams, the following concepts in optical fiber
transmission:

(a) the evanescent field;
(b) Goos—~Haenchen shift;
(¢) mode coupling.

Describe the effects of these phenomena on the propagation of light in optical fibers.
Define the normalized frequency for an optical fiber and explain its use in the
determination of the number of guided modes propagating within a step index fiber.
A step index fiber in air has a numerical aperture of 0.16, a core refractive index of
1.45 and a core diameter of 60 ym. Determine the normalized frequency for the fiber
when light at a wavelength of 0.9 um is transmitted. Further, estimate the number of
guided modes propagating in the fiber.
Describe with the aid of simple ray diagrams:

(a) the multimode step index fiber;
(b) the single-mode step index fiber.

Compare the advantages and disaavantages of these two tvpes of fiber for use as an
optical channel.

A multimode step index fiber has a relative refractive index difference of 1% and a core
refractive index of 1.5. The number of modes propagating at a wavelength of 1.3 m
is 1100. Estimate the diameter of the fiber core.

Explain what is meant by a graded index optical fiber, giving an expression for the
possible refractive index profile. Using simple ray theory condepts, discuss the
transmission of light through the fiber. Indicate the major advantage of this type of
fiber with regard to multimode propagation.

The relative refractive index difference between the core axis and the cladding of a
graded index fiber is 0.7% when the refractive index at the core axis is 1.45. Estimate
values for the numerical aperture of the fiber when:

(a) the index profile is not taken into account; and
(b) the index profile is assumed to be triangular.

Comment on the results.

2.14 A multimode graded index fiber has an acceptance angle in air of 8. Estimate the
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relative refractive index difference between the core axis and the cladding when the
refractive index at the core axis is 1.52.

The WKB value for the propagation constant 2 given in Eg. (2.91) in a parabolic
refractive index core fiber assumes an infinitely extended parabolic profile medium.
When in a practical fiber the paraboiic index profile is truncated, show that the mode
numbers / and / are limited by the following condition:

2Qm+ 1+ 1) < kant - n%)g
A graded index fiber with a parabolic index profile supports the propagation of 742
guided modes. The fiber has a numerical aperture in air ot 0.3 and a core diameter of
70 wm. Determine the wavelength of the light propagating in the fiber.

Further estimate the maximum diameter of the fiber which gives single-mode
operation at the same wavelength.
A graded index fiber with a core axis refractive index of 1.5 has a characteristic index
profile (a) of 1.90, a relative refractive index difference of 1.3 and a core diameter
of 40 um. Estimate the number of guided modes propagating in the fiber when the
transmitted light has a wavelength of 1.55 um, and determine the cutoff value of the
normalized frequency for single-mode transmission in the fiber.
A single-mode step index fiber has a core diameter of 7 um and a core refractive index
of 1.49. Estimate the shortest wavelength of light which allows single-mode operation
when the relative refractive index difference for the fiber is 1%.
In problem 2.18, it is required to increase the fiber core diameter to 10 pm whilst
maintaining single-mode operation at the same wavelength. Estimate the maximum
possible relative refractive index difference tor the fiber.
Show that the maximum value of afX is approximately 1.4 times larger for a parabolic
refractive index profile single-mode fiber than for a single-mode step index fiber. Hence,
sketch the relationship between the maximum core diameter and the propagating
optical wavelength which will facilitate single-mode transmission in the parabolic
profile fiber.
A single-mode step index fiber which is designed for operation at a wavelength of
1.3 um has core and cladding refractive indices of 1.447 and 1.442 respectively. When
the core diameter is 7.2 um, confirm that the fiber will permit single-mode transmission
and estimate the range of wavelengths over which this will occur.
A single-mode step index fiber has core and cladding refractive indices of 1.498 and
1.495 respectively. Determine the core diameter required for the fiber to permit its
operation over the wavelength range 1.48 to 1.60 um. Calculate the new fiber core
diameter to enable single-mode transmission at a wavelength of 1.30 um.
A single-mode fiber has a core refractive index of 1.47. Sketch a design characteristic
of relative refractive index difference A against core radius for the fiber to operate at
a wavelength of 1.30 ym. Determine whether the fiber remains single-mode at a
transmission wavelength of 0.85 gm when its core radius is 4.5 um.
Convert the approximation for the normalized propagation constant of a single-mode
step index fiber given in Example 2.9 into a relationship involving the normalized
wavelength M\ in place of the normalized frequency. Hence, determine the range ot
values of this parameter over which the relative error in the approximation is between
0.2% and 2%.
Given that the Gaussian function for the electric field distribution of the fundamental
mode in a single-mode fiber of Eq. (2.117) takes the torm:

[(r)=E,exp (- rifen)
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where E(r) and E, are shown in Figure 2.31, use the approximation of Eq. (2.125) to
evaluate and sketch E(r)/E, against r/a over the range 0 to 3 for values of normalized
frequency V'=1.0,1.5,2.0,2.5,3.0.

2.26 The approximate expression provided in Eq. (2.125) is valid over the range of
normalized frequency 1.2 < V' < 2.4, Sketch wofa against V over this range for the
fundamental mode in a step index fiber. Comment on the magnitude of woja as the
normalized frequency is reduced significantly below 2.4 and suggest what this indicates
about the distribution of the light within the fiber.

2.27 The spot size in a parabolic profile graded index single-mode fiber is 11.0 um at a
transmission wavelength of 1.55 um. In addition, the cutoff wavelength for the fiber is
1.22 um. Using an ESI technique, determine the fiber effective core radius and hence
estimate the angle at which the first minimum in the diffraction pattern from the fiber
would occur.

2.28 The cutoff method is employed to obtain the ESI parameters for a graded index single-
mode fiber. If the ESI relative index difference was found to be 0.30% when the spot
size and cutoff wavelength were 4.6 um and 1.29 ym, respectively, calculate the
maximum refractive index of the fiber core.

Answers to numerical problems

2.1 (a) 8.6"; (b) 83.6° 2.16 1.2 ym, 4.4 um
2.2 0.263.15.2° 2.17 94, 3.45

2.3 0.375, 75.9° 2.18 1.36 ym

24 21011 x10%ms ! 2.19 0.24%

2.5 34.6° 2.21 down to 1139 nm
2.6 28.2° 2.22 12.0 um, 10.5 um
2.9 33.5, 561 2.24 0.8<i/i <lOand 1.6 <1/i <24
2.11 92 ym 2.27 3.0 um. 18.4°
2.13 (a) 0.172; (b) 0.171 2.28 1.523

2.14 0.42%%
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3.1 Introduction
The basic transmission mechanisms of the various iypes of optical fiber waveguide
have been discussed in Chapter 2. However. the factors which affect the

performance of optical fibers as a transmission medium ‘were not dealt with in

84
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detail. These transmission characteristics are of utmost importance when the
suitability of optical fibers for communication purposes is investigated. The
transmission characteristics of most interest are those of attenuation (or loss) and
bandwidth.

The huge potential bandwidth of optical communications helped stimulate the
birth of the idea that a dielectric waveguide made of glass could be used to carry
wideband telecommunication signals. This occurred, as indicated in Section 2.1 in
the celebrated papers by Kao and Hockham, and Werts, in 1966. However, at the
time the idea may have seemed somewhat ludicrous as a typical block of glass could
support optical transmission for at best a few tens of metres before it was
attenuated to an unacceptable level. Nevertheless, careful investigation of the
attenuation showed that it was largely due to absorption in the glass, caused by
impurities such as iron, copper, manganese and other transition metals which occur
in the third row of the periodic table. Hence, research was stimulated towards a new
generation of ‘pure’ glasses for use in optical fiber communications.

A major breakthrough came in 1970 when the first fiber with an attenuation
below 20 dB km ™! was reported [Ref. 1]. This level of attenuation was seen as the
absolute minimum that had to be achiceved before an optical fiber system could in
any way compete economically with existing communication systems. Since 1970
tremendous improvements have been made, leading to silica-based glass fibers with
losses of Jess than 0.2 dBkm ™! in the laboratory [Ref. 2]. Hence, comparatively
low loss fibers have been incorporated into optical communication systems
throughout the world. Moreover, as the fundamental lower limits for attenuation
in silicate glass fibers have virtually been achieved, activities are increasing in
relation to the investigation of  other material systems which may exhibit
substantially lower losses when operated at longer wavelengths. Such mid-infrared
(and possibly far-infrared) transmitting fibers could eventually provide for
extremely long-haul repeaterless communication assuming that, in addition to the
material considerations, the optical source and detector requirements can be
satisfactorily met [Ref. 2].

The other characteristic of primary importance is the bandwidth of the fiber. This
is limited by the signal dispersion within the fiber, which determines the number of
bits of information transmitted in a given time period. Therefore, once the
attenuation was reduced to acceptable levels attention was directed towards the
dispersive properties of fibers. Again, this has led to substantial improvements,
giving wideband fiber bandwidths of many tens of gigahertz over a number of
kilometres.

In order to appreciate these advances and possible future developments, the
optical transmission characteristics of fibers must be considered in greater depth.
Therefore, in this chapter we discuss the mechanisms within optical fibers which
give rise to the major transmission characteristics mentioned previously
(attenuation and dispersion). whilst also considering other, perhaps less obvious,
effects when light is propagating down an optical fiber (modal noise. polarization
and nonlinear phenomena).
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We begin the discussion of attenuation in Section 3.2 with calculation of the total
losses incurred in optical fibers. The various attenuation mechanisms (material
absorption, linear scattering, nonlinear scattering, fiber bends) are then considered
in detail in Sections 3.3 to 3.6. The primary focus within these sections is on silica-
based glass fibers. However, in Section 3.7 consideration is given to other material
systems which may be employed for mid-infrared and far-infrared optical
transmission. Dispersion in optical fibers is described in Section 3.8, together with
the associated limitations on fiber bandwidth. Sections 3.9 and 3.10 deal with
intramodal and intermodal dispersion mechanisms and included in the latter section
is a discussion of the modal noise phenomeénon associated with intermodal
dispersion. Overall signal dispersion in both multimode and single-mode fibers is
then considered in Section 3.11. This is followed in Section 3.12 by discussion of
the modification of the dispersion characteristics within single-mode fibers in order
to obtain dispersion shifted and dispersion flattened fibers. Section 3.13 presents a
brief account of polarization within single-mode fibers which includes description
of the salient features of polarization maintaining fibers.

Finally, nonlinear optical phenomena, which can occur at relatively high optical
power levels within single-mode fibers, are dealt with in Section 3.14.

3.2 Attenuaﬁon/

The attenuation or transmission loss of optical fibers has proved to be one of the
most important factors in bringing about their wide acceptance in telecommuni-
cations. As channel attenuation largely determined the maximum transmission
distance prior to signal restoration, optical fiber communications became especially
attractive when the transmission losses of fibers were reduced below those of the
competing metallic conductors (less than 5 dB km™").

Signal attenuation within optical fibers, as with metallic conductors, is usually
expressed in the logarithmic unit of the decibel. The decibel, which is used for
comparing two power levels, may be defined for a particular optical wavelength as
the ratio of the input (transmitted) optical power P; into a fiber to the output
(received) optical power P, from the fiber as:

Number of decibels (dB) = 10 logo % G.1)

This logarithmic unit has the advantage that the operations of multiplication and
division reduce to addition and subtraction, whilst powers and roots reduce to
multiplication and division. However, addition and subtraction require a
conversion to numerical values which may be obtained using the relationship:

Pi _ (dB/10)
o 10 (3.2)

In optical fiber communications the attenuation is usually expressed in decibels
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per unit length (i.e. dBkm "y following:
P
agpl. = 10 logioe P 3.3)

o

where auy is the signal attenuation per unit length in decibels and L is the fiber
length

Example 3.1
When the mean optical power launched into an 8 km length of fiber is 120 W, the
mean optical power at the fiber output is 3 uW.

Determine:

(a) the overall signal attenuation or loss in decibels through the fiber assuming there
) are no connectors or splices;
4b) the signal attenuation per kilometre for the fiber.
(¢} the overall signal attenuation for a 10 km optical link using the same fiber with
splices at 1 km intervals, each giving an attenuation of 1 dB;
(d) the numerical input/output power ratio in (c).

Solution: (a) Using Eq. (3.1), the overall signal attenuation in decibels through
the fiber is:

P; 120 x 107°
s 1 P ——‘I = e
Signal attenuation = 10 logio . 10 logio 3% 10°°

=10 logio 40 = 16.0 dB

(b) The signal attenuation per kilometre for the fiber may be simply obtained by
dividing the result in (a) by the fiber length which corresponds to it using Eq. (3.3)
where,

(Y(;BL = 1(7 O dB
hence,

16.0

ady = g
8

=2.0dBkm™!

(¢) As agp = 2dBkm’ ' the loss incurred along 10 km of the fiber is given by

agpl =2 x10=20dB

However, the link also has nine splices (at 1 km intervals) each with an attenuation
of 1 dB. Thercfore, the loss due to the splices is 9 dB.
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